Infrared-Transparent Gold Nanoparticles Converted by Tumors to Infrared Absorbers Cure Tumors in Mice by Photothermal Therapy
نویسندگان
چکیده
Gold nanoparticles (AuNPs) absorb light and can be used to heat and ablate tumors. The "tissue window" at ∼ 800 nm (near infrared, NIR) is optimal for best tissue penetration of light. Previously, large, 50-150 nm, gold nanoshells and nanorods that absorb well in the NIR have been used. Small AuNPs that may penetrate tumors better unfortunately barely absorb at 800 nm. We show that small AuNPs conjugated to anti-tumor antibodies are taken up by tumor cells that catalytically aggregate them (by enzyme degradation of antibodies and pH effects), shifting their absorption into the NIR region, thus amplifying their photonic absorption. The AuNPs are NIR transparent until they accumulate in tumor cells, thus reducing background heating in blood and non-targeted cells, increasing specificity, in contrast to constructs that are always NIR-absorptive. Treatment of human squamous cell carcinoma A431 which overexpresses epidermal growth factor receptor (EGFr) in subcutaneous murine xenografts with anti-EGFr antibodies conjugated to 15 nm AuNPs and NIR resulted in complete tumor ablation in most cases with virtually no normal tissue damage. The use of targeted small AuNPs therefore provides a potent new method of selective NIR tumor therapy.
منابع مشابه
Iron-gold (Fe2O3@Au) core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance
Introduction: Photothermal therapy (PTT) is a nanotechnology-assisted cancer hyperthermia approach in which the interaction between laser light and plasmonic nanoparticles generates a localized heating for thermoablation of the tumor. Recent efforts in the area of PTT follow two important aims: (i) exploitation of targeting strategies for preferential accumulation of plasmonic ...
متن کاملAu Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment: Benchmarking against Nanoshells
Au nanoparticles with plasmon resonances in the near-infrared (NIR) region of the spectrum efficiently convert light into heat, a property useful for the photothermal ablation of cancerous tumors subsequent to nanoparticle uptake at the tumor site. A critical aspect of this process is nanoparticle size, which influences both tumor uptake and photothermal efficiency. Here, we report a direct com...
متن کاملDevelopment of functional gold nanorods for bioimaging and photothermal therapy
Gold nanorods have strong surface plasmon band at near-infrared light region, and are used as a photothermal converter. Since the near-infrared light penetrates into tissues deeply, it has been expected as a contrast agent for near infrared light bioimaging, a photosensitizer for photothermal therapy, and functional device for drug delivery system responding to near-infrared light irradiation. ...
متن کاملGold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice.
Plasmonic photothermal therapy (PPTT) is a minimally-invasive oncological treatment strategy in which photon energy is selectively administered and converted into heat sufficient to induce cellular hyperthermia. The present work demonstrates the feasibility of in vivo PPTT treatment of deep-tissue malignancies using easily-prepared plasmonic gold nanorods and a small, portable, inexpensive near...
متن کاملGold nanoparticle hyperthermia reduces radiotherapy dose.
UNLABELLED Gold nanoparticles can absorb near infrared light, resulting in heating and ablation of tumors. Gold nanoparticles have also been used for enhancing the X-ray dose to tumors. The combination of hyperthermia and radiotherapy is synergistic, importantly allowing a reduction in X-ray dose with improved therapeutic results. Here we intratumorally infused small 15 nm gold nanoparticles en...
متن کامل